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Motivated by recently discovered unusual properties of bulk nematic elastomers, we study a phase diagram
of liquid-crystalline polymerized phantom membranes, focusing on in-plane nematic order. We predict that
such membranes should generically exhibit five phases, distinguished by their conformational and in-plane
orientational properties: namely, isotropic-crumpled, nematic-crumpled, isotropic-flat, nematic-flat, and
nematic-tubule phases. In the nematic-tubule phase, the membrane is extended along the direction ofsponta-
neousnematic order and is crumpled in the other. The associated spontaneous symmetries breaking guarantees
that the nematic tubule is characterized by a conformational-orientational softsGoldstoned mode and the
concomitant vanishing of the in-plane shear modulus. We show that long-range orientational order of the
nematic tubule is maintained even in the presence of harmonic thermal fluctuations. However, it is likely that
tubule’s elastic properties are qualitatively modified by these fluctuations, which can be studied using a
nonlinear elastic theory for the nematic tubule phase that we derive at the end of this paper.
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I. INTRODUCTION

Fluctuating polymerizedf1g membranesf2g have attracted
considerable interest in the past two decades. Probably the
most striking property that distinguishes them from their
one-dimensional polymer analog and most other two-
dimensional systems is that polymerized membranes admit a
low-temperature flat phasef3–5g characterized by a long-
range order in membrane’s normal. This phase is separated
from a high-temperature crumpled phase, with randomly ori-
ented normals, by a thermodynamically sharp transition
f6–8g. At low temperatures, strong interplay between thermal
fluctuations and elastic nonlinearities infinitely enhances the
effective bending rigidity, which in turn stabilizes the flat
phase against these very fluctuationsf3,4,8,9g. The resulting
flat phase exhibits rather unusual length-scale-dependent
elasticity, nonlinear response to external stress and a univer-
sal negative Poisson ratiof4,5g.

More recently, stimulated by a number of possible aniso-
tropic realizations, the role of elastic membrane anisotropy
was considered by Radzihovsky and Tonerf10g. It was dis-
covered that while permanent in-plane anisotropy is unim-
portant at long scales within the crumpled and flat phases, it
qualitatively modifies the global phase diagram of aniso-
tropic polymerized membranes, leading to an intermediate
sin its properties and location in the phase diagramd “tubule”
phase. In the tubule phase the membrane is extended in one
direction and crumpled in the other, with its crumpled
boundary exhibiting statistics of a self-avoiding polymer.
The usual crumpled-to-flat transition of an isotropic mem-
brane is therefore generically split into two consecutive ones:
crumpled-to-tubule and tubule-flat transitions. Fluctuations,
nonlinear elasticity, and phase transitions into and out of the
tubule phase have been studied extensivelyf10g, with predic-
tions dramatically confirmed by large-scale Monte Carlo
simulationsf11g.

Motivated by unusual properties of nematic elastomers
that have been recently discoveredf12–18g—i.e., a sponta-
neous nematic order in an amorphous solid phase and result-
ing soft elasticity characterized by one vanishing shear
modulus—we have previously studied fluctuations and elas-
ticity of a flat tethered membrane that exhibitsspontaneous
in-plane anisotropy—i.e., a nematic orderf19g. Such sponta-
neous order guarantees the existence of a zero-energy in-
plane deformation mode corresponding to a simultaneous re-
orientation of nematic and uniaxial distortion axes and,
hence, vanishing of an in-plane shear modulus. As in other
“soft” fluctuating systemsf20g, we found that elastic nonlin-
earities become qualitatively important in determining mem-
brane’s long-scale elasticity and conformations. However,
due to the vanishing of an in-plane shear modulus, the elas-
ticity of flat nematic elastomer membranes differs qualita-
tively from that of isotropic and that of explicitly anisotropic
membranes: a renormalization analysis of the undulation
nonlinearity shows that the nematic-flat phase is character-
ized by a conventional, length-scale-independent bending-
rigidity modulusf19,21g.

While bulk nematic elastomers and gels have received
considerable experimental and theoretical attention, proper-
ties of equally interesting two-dimensional system—i.e.,
nematic elastomer membranes—have, to the best of our
knowledge, not been explored in any detail. A fewsrather
idealizedd experimental realizations of suchspontaneously
anisotropic nematic membranes can be envisioned. For ex-
ample, one may prepare a nematic elastomer sheet in its
isotropic phase and lower the temperature of the elastomer
membrane into its nematic state. The chemical structure of
liquid-crystalline mesogenic units in such nematic elastomer
should be chosen such that they prefer alignment parallel to
the membrane surface. Liquid-crystalline polymers adsorbed
onto a polymerized membrane can also develop a spontane-
ous nematic order at sufficiently high densityf22g, which in
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turn will act as a spontaneous elastic anisotropy to the mem-
brane elasticity. The elastic properties of lipid bilayers with
spontaneous tilt order should be almost identical to nematic
elastomer membranes that we study in this paperf23g. Fi-
nally, other types of liquid-crystalline orders may also be
realized in polymerized membranes. For example, two-
dimensional smectic order may spontaneously develops
when the temperature is further lowered in a nematically
ordered elastomer membrane. This can also be taken into
account using a straightforward generalization of our model.

In this paper we continue to explore the physics of phan-
tom f24g liquid-crystalline tethered membranes, focusing on
the overall phase diagram that results from the interplay of
membrane’s in-plane nematic and conformational orders. As
discussed in detail in Sec. III, we find that in the isotropic
sector of the phase diagram, characterized by a vanishing
in-plane nematic order, the system is identical to the usual
isotropic tethered membranes and, therefore, exhibits well-
studied isotropic-crumpledsICd and isotropic-flat sIFd
phases. Development of nematic order generically leads to
three additional phases: the nematic-crumpledsNCd,
nematic-tubulesNTd, and nematic-flatsNFd phases. Different
phases can be distinguished by different expectation values
of the nematic order parameter and the metric tensor. These
results are summarized by a mean-field global phase-diagram
in Fig. 1.

We also study harmonic fluctuations within the most in-
teresting nematic-tubule phase. As we discuss in Sec. IV and
show schematically in Fig. 2, the geometry and fluctuations
of a nematic tubule, with an intrinsic sizeL3L, are charac-
terized by its average thicknessRGsLd and root mean fluc-
tuations hrmssLd about its energetically preferred extended
state, which scale as

RGsLd ~ Ln, hrmssLd ~ Lu, s1d

where n and u are universal exponentf10g. For idealized
“phantom” membranesn=1/4 andu=1, but are expected to

be significantly modified by the self-avoidance and elastic
nonlinearitiesf10g. These conformational propertiessor the
absence thereofd can also be used as indicators of phase tran-
sitions into and out of the nematic tubule phase, accompa-
nied by usual thermodynamic singularities—e.g., in the heat
capacity. For a more detailed discussion of the scaling prop-
erties of polymerized tubules and transitions into and out of
the tubule phase, we refer the reader to Ref.f10g.

We also derive a fully rotationally invariant nonlinear
elasticity characterizing nematic tubules. We find that be-
cause of the spontaneous nature of the in-plane nematic or-
der, the nonlinear elastic free energy of the nematic tubule
differs qualitatively from the tubule phase of a permanently
anisotropic membranef10g. We leave the full analysis of
tubule’s elastic nonlinearities and thermal fluctuations to a
future research. Here, we will have little to say on the very
interesting and important question of the effects of heteroge-
neity, associated with the random cross-linking of elas-
tomers. Based on a recent body of work on conventional
liquid crystals confined in random environmentsf25,26g and
randomly polymerized membranesf27g, we expect that at
sufficiently long scales, even weak heterogeneities will lead
to qualitatively important modifications of some of the pre-
dictions made in this paper. Understanding these will be es-
sential for a direct comparison with experimentsf28g. We
plan to explore these in the future.

The body of this paper is organized as follows. In Sec. II
we introduce a Landau model for a liquid-crystalline tethered
membrane, whose mean-field phase diagram we map out in
Sec. III. In Sec. IV, we focus on the most interesting phase—
the nematic-tubule—and study its thermal fluctuations at the
harmonic level. In Sec. IV B, we formally integrate out the
nematic order parameter and derive an effective fullynonlin-
ear and rotationally invariant elastic free energy for the nem-
atic tubule phase.

II. MODEL OF NEMATIC ELASTOMER MEMBRANE

Nematic elastomer membranes are direct generalization of
permanently anisotropic tethered membranes studied in Ref.
f10g, with the in-plane elastic anisotropy chosen by aspon-
taneously, local nematic order. The latter plays the role of a
new degree of freedom that fluctuates at a finite temperature.
As for an ordinary tethered membrane, its geometric confor-
mation sstated is described by a three-dimensional vector
field Rsxd, which specifies the positionsembeddingd of the
reference-space mass pointx in the three-dimensional target

FIG. 1. Schematic mean-field phase diagram for a polymerized
membrane with spontaneous in-plane nematic order. Parametersr
and b drive crumpling transition and isotropic-nematic transition,
respectively, and are defined in Secs. II and III. The nematic-tubule
phase is the stable phase in the shaded region. In the triangle region
between three critical pointsC1, C2, andC3, two phases are meta-
stable. The dashed line connectingC1 andC2 is a sschematicd first-
order transition line between isotropic/nematic-crumpled phases
and the nematic-tubule phase.

FIG. 2. Conformational properties of the nematic tubule phase.
Average thicknessRG and root mean fluctuationhrms are defined in
Eqs.s49d. Small rods, aligned on the membrane’s surface, schemati-
cally indicate existence of the in-plane nematic order.

X. XING AND L. RADZIHOVSKY PHYSICAL REVIEW E 71, 011802s2005d

011802-2



space. Throughout this paper, we will use lowercase boldface
characters, such asx=xaêa=xx̂+yŷ, to denote two-
dimensional vectors in the reference space and uppercase

boldface characters such asR=XX̂ +YŶ +ZẐ to denote
three-dimensional vectors in the target space, respectively,
spanned by a set of mutually orthogonal unit vectors,hê1

= x̂ ,ê2= ŷj and hX̂ ,Ŷ ,Ẑj.
The elastic free energy density of the membrane can be

conveniently described as a function of a reference-space
metric tensorg

=
:

gab =
]R

]xa
·

]R

]xb
, s2d

inherited from the Euclidean metricdi j of the embedding
space. By construction,gab is explicitly a target-space scalar
si.e., rotationally invariant in the embedding spaced, rank-2
reference-space tensor, and is non-negative. The thermal ex-
pectation value of the metric tensor,kg

=
l, can be used to dis-

tinguish different phases of a tethered membrane. More spe-
cifically, two eigenvalues ofkg

=
l describe whether and how

the membrane is extended along two directions in its refer-
ence space. For example,kg

=
l vanishes in the crumpled phase

and is proportional to the identity matrix in the flat phase,
with the common eigenvalue describing the relative size of
the flat membrane in the three-dimensional target space. In
the tubule phase of an intrinsically anisotropic membrane,
kg
=

l has only one positive eigenvalue, which corresponds to
the fact that the membrane is extended along one direction
and crumpled along others. Thereforekg

=
l has all the proper-

ties of a physical order parameter.
Nematic elastomer membranes are in addition character-

ized by a local in-plane nematic order parameter fieldQ
=

sxd.
Characterizing membrane’s spontaneous elastic anisotropy,
Q
=

describes an intrinsic property of the membrane and is a
second-rank symmetric trace-less tensor in the two-
dimensional reference space, with componentsQab,a,b
=x,y, and SaQaa=0, and is a target-space scalarf29g. The
Landau free energy density for our model of a nematic elas-
tomer membrane is a rotationally invariantsboth in the ref-
erence and target spacesd function of g

=
,Q
=

,

f̃fg
=
,Q
=

g = fefg=g + fnfQ
=

g + fenfg=,Q=g, s3d

where fe is the elastic free energy density for an isotropic
polymerized membranef7g:

fefg=g =
k

2
s¹2Rd2 + r8 Tr g

=
+

l

2
sTr g

=
d2 + m Tr g

=

2. s4d

fn is the Landau–de Gennes free energy density for a
nematic-isotropic transition in two dimensions:

fn =
K

2
s¹Q
=

d2 +
b8

2
Tr Q
=

2 +
v
2

sTr Q
=

2d2. s5d

It reflects the special feature of nematic-isotropic transition
in two dimensions—namely, the absence of the usual cubic
invariant TrQ

=

3 that vanishes identically. This allows

nematic-isotropic transitions in two dimensions to be con-
tinuousf30g.

The last part off̃, Eq. s3d, is the coupling between nem-
atic order and the elastic degrees of freedom, which, to low-
est order, is given by

fen= − a Tr Qg
=

= − a Tr Qg̃
=

, s6d

whereg̃
=

=g
=

−sTr g
=

dI= /2 is the traceless part of the metric ten-
sor. In the presence of such tensorial nemato-elastic cou-
pling, nematic orderQ

=
acts as a uniaxial shear stress and

therefore renders the in-plane elasticity anisotropic inside a
nematic phase. Concomitantly, an elastic distortion charac-
terized by an anisotropic metric tensor acts as a quadrupolar
field inducing nematic order. As usual in a Landau descrip-
tion, although other higher-order couplings exist, such as, for
example,g Tr g

=
Tr Q
=

2, they do not lead to any new qualita-
tive effects and, furthermore, for weak nematic order, are
quantitatively subdominant. Their primary effect is to
slightly change the locus of phase boundaries without chang-
ing their topology. We will therefore ignore them in this pa-
per.

We can also formally and perturbatively integrate out the
nematic order parameterQ

=
in Eq. s3d and obtain an effective

elastic free energy density formulated purely in terms of the
metric tensor. Up to fourth order ing

=
, it is given by

fefffg=g =
1

2
ks¹2r d2 +

1

2
t Tr g

=
+ usTr g̃

=

2d + vsTr g
=

d2

+ BsTr g̃
=

2d2 + C Tr g Tr g̃
=

2 s7d

and agrees with the purely elastic model used in our previous
study of the nematic-flat phasef19g. Although such effective
model can also be used to study the phase diagram and other
phases, it cannot distinguish the nematic-crumpled and the
isotropic-crumpled phases, since both are characterized by a
vanishing metric tensor. Therefore, depending on the equilib-
rium value of the metric tensor, controlled by model param-
eters, feff predicts a crumpled phase, a spontaneous tubule
phasesnematic-tubule phased, an isotropic-flat phase, and a
spontaneous anisotropic flat phasesnematic-flat phased.
Here, the usual crumpled-to-flat transition is determined by
changing the sign oft, while the crumpled-to-tubule transi-
tion is driven by a sign ofu~m. This purely elastic approach
has the advantage of simplicity, stemming from absence of
the nematic-order parameter. In Sec. IV, we will use this
effective elastic free energy to study the nonlinear elasticity
in the nematic-tubule phase.

III. MEAN-FIELD PHASE DIAGRAM

An isotropic polymerized membrane with elastic free en-
ergy density, Eq.s4d undergoes a continuousf31g crumpling
transition asr8 is tuned from positive to negativef7g. On the
other hand,fn, Eq. s5d, exhibits a second-order isotropic-
nematic transition asb8 changes signf30g. When bothr8 and
b8 are small, the competition between these two types of
order becomes important.

To work out the mean-field phase diagram, we minimize
the free energy density, Eq.s3d, over the metric tensorg

=
and
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the nematic order parameterQ
=

. To this end, it is convenient
to rescale both order parametersg

=
andQ
=

as well as the total
free energy, Eq.s3d, as follows:

Q
=

→ a

4Îmv
Q
=

, s8ad

g
=

→ a2

16Îm3v
g
=

, s8bd

f̃ → a4

256m2v
f . s8cd

Furthermore, it is clear that the free energy is minimized by
uniform nematic order and metric tensor. Therefore we can
ignore the two higher-derivative termsk andK appearing in
Eqs. s4d and s5d, respectively. The resulting rescaled total
free energy density has the following simple form:

ffg
=
,Q
=

g =
e

2
fTrsg

=
+ rI= − Q

=
dg2 + Trsg

=
+ rI= − Q

=
d2

+
1

2
sTr Q
=

2 + bd2 s9d

where

r =
8r8Îm3v
a2sl + md

, s10ad

b =
8mb8

a2 − 1, s10bd

e =
l

m
, s10cd

and I= is the 232 identity matrix. The stability of the elastic
free energy, Eq.s4d, requiresm.0 andl+m.0; therefore,
e.−1.

The linear coupling, Eq.s6d, betweeng
=

and Q
=

prefers
same “orientation” salignment of their eigenvectorsd for
these two tensors. Therefore, in the ground state, whereg

=

and Q
=

minimize the total free energy, Eq.s9d, these two
tensors commute. Using the coordinate system in whichg

=

andQ
=

are simultaneously diagonal, they can be parametrized
as

g
=

= Sg1 0

0 g2
D, Q
=

= SS 0

0 − S
D , s11d

where g1 and g2 are two non-negative eigenvalues of the
metric tensorg

=
andS a non-negative magnitude of the nem-

atic order. Substituting these into free energyf, Eq. s9d, we
find that it can be written as

f =
1

2
fgfg1,g2,Sg +

1

2
fSfSg, s12d

where

fgfg1,g2,Sg = s2 + edfsg1 − a1d2 + sg2 − a2d2g

+ 2esg1 − a1dsg2 − a2d s13ad

=s1 + edsg1 + g2 − a1 − a2d2

+ sg1 − g2 − a1 + a2d2, s13bd

fSfSg = sS2 + bd2, s13cd

and

a1 = sS− rd, s14ad

a2 = − sS+ rd, s14bd

with a1ùa2, and fg, fS non-negative definite.
To obtain a mean-field phase diagram, we need to mini-

mize f, Eq. s12d, over non-negativeg1, g2, andS for a given
r and b. Before doing that, however, it is useful to classify
all possible phases according to ground-state values of
g1, g2, and S. It is easy to see that for vanishing nematic-
order, the free energy density, Eq.s3d, reduces to that of an
isotropic polymerized membrane—i.e., Eq.s4d. An isotropic
polymerized membrane is either in the isotropic-crumpled
phase whereg1=g2=0 or in the isotropic-flat phase where
g1=g2.0. In other words, a state withg1Þg2 andS=0 can-
not be a stable ground state. Conversely, anisotropy in the
metric tensor,g1Þg2, acts as an external field on the nematic
order parameterQ

=
, inevitably inducing finite nematic order.

ThereforeS must be finite wheneverg1Þg2. Similarly, a
nonzero nematic order acts as an external shear stress tensor,
which always induces a finite shear strain in a flat membrane
sHook’s lawd, leading to elastic anisotropy withg1Þg2.
Thereforeg1 andg2 cannot be identical in the presence of a
finite nematic order,S. That is, if SÞ0, the membrane can
either be in a nematic-crumpled phasesg1=g2=0d or a
nematic-tubule phasesg1.g2=0d or a nematic-flat phase
sg1.g2Þ0d. We list the resulting five membrane phases in
Table. I.

We now minimize the rescaled free energy, Eq.s12d, over
g1, g2, andS. It is easy to see that ifb.0, fSfSg in Eq. s13cd
is minimized by

S= 0. s15d

Substituting this into Eq.s13ad, we find thatfgfa1,a2,S=0g
is minimized by

TABLE I. Possible phases of a nematic elastomer membrane.

g1, g2, andS S=0 SÞ0

g1=g2=0 Isotropic crumpled Nematic crumpled

g1=g2.0 Isotropic flat Unstable

g1.g2.0 Unstable Nematic flat

g1.g2=0 Unstable Nematic tubule
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g1 = g2 = H0, for r ù 0,

Îur u, for r , 0.
J s16d

which, as discussed above, corresponds to the isotropic-
crumpled and the isotropic-flat phases, respectively. This
situation is illustrated in theb-r plane in Fig. 1.

For b,0, our strategy will be to determine the region of
smetadstability for various phases. We first minimize
fgfg1,g2,Sg, defined by Eq.s13ad, for givena1 anda2—i.e.,
for given S and r. It is clear that for fixed values ofa1 and
a2, a contour fg= const is an ellipse in thesg1,g2d plane
centered atsa1,a2d. Its principle axes are along two diagonal
s1, ±1d directions, as shown in Fig. 3. Depending on the
values ofa1 anda2—i.e., the center of the ellipse—the mini-
mizer of fgfg1,g2,Sg falls into three categories.

sid a1.a2.0. The ellipses are centered within the first
quadrant. It is easy to see thatfg is minimized by

sg1
* ,g2

*d = sa1,a2d = sS− r,− S− rd, s17d

with a minimal value zero. This corresponds to a nematic-flat
phase. Substituting theseg1

* andg2
* into Eq. s12d, we obtain

f =
1

2
sS2 + bd2, s18d

which, when minimized overS, gives the magnitude of the
nematic-order parameter in the nematic-flat phase:

S= Îubu. s19d

The condition of non-negativity ofg1,2 andg2
* =a2, gives the

condition of stability of the nematic-flat phase,

g2
* = − sS+ rd s20d

=− sr + Îubud . 0, s21d

which leads to the phase boundary for the nematic-flat phase
illustrated in Fig. 1.

sii d a1+fe / s2+edga2.0 anda2,0. In this case, the cen-
ters of elliptic free energy contours are located outside the
first quadrant and therefore do not correspond to physical
solution of the metric tensor, characterized byg1,2ù0. Inde-
pendent ofa1, however, there is always one elliptic contour,
which is tangent to the positiveg1 axis as illustrated in Fig.
3. It is straightforward to see that this tangent pointsg1

*

.0,g2
* =0d is the minimum of fg in the physical space of

metrics, which corresponds to the nematic-tubule phase. At
this tangent point, the partial derivative offg with respect to
g1 vanishes—i.e.,

U ] fg

]g1
U

sg1
* ,0d

= 2s2 + edSg1
* − a1 −

ea2

2 + e
D = 0, s22d

which leads to

g1
* = a1 +

ea2

2 + e
=

2fS− s1 + edrg
2 + e

. s23d

Substituting thisg1
* andg2

* =0 into Eq.s12d, the rescaled total
elastic free energy reduces to

f =
2s1 + ed
s2 + ed

sS+ rd2 +
1

2
sS2 + bd2. s24d

The equilibrium value ofS is determined by minimizing this
f with constraints

a2 , 0 → S. − r , s25ad

a1 +
ea2

2 + e
. 0 → S. s1 + edr . s25bd

For a negativer, it is easy to see that as long asr ,Îubu,
there is always a positive value ofS that both minimizes Eq.
s24d and satisfies the constraints, Eqs.s25d. The case of posi-
tive r is more subtle. By a technically involved, but concep-
tually straightforward, calculation, we find that forb,−2
−1/s2+ed si.e., to the left of pointC1 in Fig. 1d, a nematic
tubule state is stable as long ass1+edr .Îu2+bu. For −2s1
+ed / s2+ed.b.−2−1/s2+ed si.e., to the right ofC1, but to
the left of C2 in Fig. 1d, we find that a metastable nematic-
tubule state exists as long as

b +
2s1 + ed

2 + e
, − 3S s1 + edr

2 + e
D2/3

. s26d

And finally for −2s1+ed / s2+ed,b,0 si.e., to the right of
C2 in Fig. 1d, the nematic tubule phase is stable if and only if
r ,0.

siii d a1+fe / s2+edga2,0 anda2,0. In this case, there is
no ellipse tangent with the positiveg1 axis; i.e., the nemat-
ictubule phase is not stable. There is, however, always one
ellipse passing through the origin,g1

* =g2
* =0 ssee Fig. 3d, that

minimizes fg. Depending on the value ofS, the correspond-
ing phase may be a nematic-crumpled or isotropic-crumpled
phase. Settingg1=g2=0 in Eq. s12d, we obtain

FIG. 3. Contour plot offg= const, an ellipse centered atsa1,a2d
in the sg1,g2d plane, wherea1øa2, with principle axes along the
diagonals1,1d direction. As discussed in the text, in casesid fg is
minimized by the center of the ellipse, which corresponds to a
nematic-flat phase. In casesii d, it is minimized by the pointT,
where the ellipse is tangent with the positiveg1 axis. This corre-
sponds to a nematic-tubule phase. In casesiii d, fg is minimized by
the origing1=g2=0, which corresponds to asnematic or isotropicd
crumpled phase.
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f =
1

2
S4 + s2 + bdS2 +

1

2
b2 + 2s1 + edr2, s27d

where we have used Eqs.s14ad and s14bd. Minimizing it
over S, we find the equilibrium value of the nematic-order
parameter

S= H0 if b + 2 . 0,

Îub + 2u if b + 2 , 0.
J s28d

Considering the self-consistent condition that defines case
siii d, as well as the definition ofa1 anda2, we find that for
negativeb, the isotropic-crumpled phase is stable if and only
if

b + 2 . 0 and r . 0. s29d

On the other hand, the nematic-crumpled phase is stable if
and only if

b + 2 , 0 and 0, Îub + 2u , s1 + edr . s30d

We have thereby determined the region of metastability
for all five phases admitted by the nematic-elastomer mem-
brane. These results are summarized in Fig. 1. In thesb ,rd
plane the small triangular region between three critical points
C1, C2, andC3 is particularly interesting. This region is di-
vided into two parts by the vertical lineb=−2 passing
throughC3. In the left part, both nematic-tubule and nematic-
crumpled phases are metastable. In the right part, both
nematic-tubule and isotropic-crumpled phases are meta-
stable. Consequently, there exists a first-order transition line
betweenC1 andC2. This line is illustrated schematically by a
dashed curve in Fig. 1. It connects a second-order nematic-
tubule—to—nematic-crumpled transition boundary on the
left to a second-order nematic-tubule—to—isotropic-
crumpled phase boundary on the right. The exact position of
this first-order line, which can in principle be determined
from comparing free energy of different phases, is not essen-
tial to our discussion. Outside the triangular region, all phase
transitions are continuous in our mean-field analysis.

For completeness, in Table II we list the coordinates of
the three critical pointsC1, C2, andC3 in the sb ,rd plane. It
is interesting to note that distances between any two of these
points, and therefore the triangular area, vanishes ase be-
comes large, corresponding to an incompressible limit of
vanishing shear-to-bulk moduli ratio. Due to the same rea-

son, in the limit of small shear modulus, the discontinuity of
first-order transition linesjump of order parameter or other
physical quantitiesd vanishes.

IV. PHANTOM NEMATIC-TUBULE PHASE

Among all phases that we have identified in the preceding
section, the nematic tubule phase is the most interesting one.
As we have just found, it is characterized by a nonzero nem-
atic order and a metric tensor with one positive eigenvalue—
i.e.,

Q
=0 = SS 0

0 − S
D, g

=0 = Sg1 0

0 0
D . s31d

Even though the ground-state configuration of this nematic
tubule phase is identical to that of the tubule phase studied in
Ref. f10g, as we will show in this section, its elasticity and
thermal fluctuations differ qualitatively, due to the fact that
rotational symmetry isspontaneouslybroken, in both the ref-
erence space and target space.

A. Harmonic fluctuations

We first study harmonic thermal fluctuations in the nem-
atic tubule phase. Without loss of generality we pick the
intrinsic sreference spaced membrane axes such that in the
ground state thex axis coincides with the extended direction
of tubule, with the tubule therefore crumpled along they
axis. Similarly, our choice of target-space coordinate system

orients the tubule along theX̂ axis of the embedding space.
With this choice, the tubule ground-state conformation is
given by

R0sr d = zxX̂ , s32d

whereg1=z2 can be calculated by minimizing the total free
energy, Eq.s9d.

To study thermal fluctuations about the nematic-tubule
ground state, we follow the parameterization introduced in
Ref. f10g for the study of an intrinsically anisotropic tubule.
A deviation away from the ground state can be parametrized
by a one-dimensionalsscalard phonon fieldusr d and a two-
dimensional undulation fieldhsxd, defined by

Rsr d = fzx + usr dgX̂ + hsr d. s33d

The corresponding metric tensor, Eq.s2d, is then given by

gxx
0 = sz + ]xud2 + s]xhd2, s34ad

gxy
0 = sz + ]xuds]yud + s]xhd · s]yhd, s34bd

gyy
0 = s]yud2 + s]yhd2. s34cd

The Lagrange strain tensor is defined as half the deviation of
the metric tensor from its ground-state valueg

=0—i.e.,

uab =
1

2
sgab − gab

0 d. s35d

Its components are given by

TABLE II. Coordinates of three critical pointsC1, C2 and
C3.

C1 C2 C3

b − 2 −
1

2 + e
− 2 +

2

2 + e
−2

r
1

s1 + edÎ2 + e
0 0
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uxx = zs]xud +
1

2
s]xud2 +

1

2
s]xhd2, s36ad

uxy =
1

2
sz + ]xuds]yud +

1

2
s]xhd · s]yhd, s36bd

uyy =
1

2
s]yud2 +

1

2
s]yhd2. s36cd

Fluctuations of the nematic-order parameterQ
=

about its
ground-state valueQ

=0 can be parametrized by two variables
t ands defined by

Q
=

= Q
=0 + dQ

=
= SS+ t s

s − S− t
D . s37d

They correspond to longitudinal and transverse excitations of
the nematic order, respectively. Their physical significance
can be readily seen by comparing Eq.s37d with the more
usual parametrization of nematic fluctuation in terms of ro-
tation angleu and magnitude fluctuationdS:

Q
=

= sS+ dSdScos 2u sin 2u

sin 2u − cos 2u
D . s38d

We find that up to linear order ofdS andu,

s < 2Su, t < dS. s39d

Therefore the longitudinal componentt describes fluctua-
tions in the magnitude of nematic anisotropy aboutS, while
the transverse components is proportional to the rotation of
the nematic director.

When expressed in terms of these scalar fields and the
Lagrange strain tensor, the nematic-tubule free energy, Eq.
s9d, becomes

ffg
=
,Q
=

g =
s1 + ed

2
s2r + z2 + 2uxx + 2uyyd2

+
1

2
fb + 2s2 + 2sS+ td2g2

+ 2ss − 2uxyd2 + 2sS− z2/2 + t − uxx + uyyd2.

s40d

The condition thatg
=0 andQ

=0, as given by Eq.s31d, mini-
mize the elastic free energy densityffg

=
,Q
=

g guarantees that in
Eq. s40d terms that are linear int or uxx strictly vanish and
thereby leads to two equations that determine the ground-
state-order parametersS andz:

− 2S+ 2rs1 + ed + s2 + edz2 = 0, s41ad

4S3 + 2Ss1 + bd − z2 = 0. s41bd

Finally, eliminating the strain componentsuab in favor of
the phononsud and height undulationshd fields using Eqs.
s36d and keeping only up to quadratic terms, we obtain the
harmonic free energy density of the nematic tubule:

ffs,t,u,hg = ffg
=
,Q
=

g − ffg
=0,Q=0g

= Kss¹sd2 + Csss − as]yud2 + Kts¹td2

+ Ctst − at]xud2 + Bus]xud2 + Kus]y
2ud2

+ Bhs]yhd2 + Khs]x
2hd2, s42d

where

Cs = 2s1 + 2S2 + bd, s43ad

Ct = 2s1 + 6S2 + bd, s43bd

as =
z

1 + 2S2 + b
, s43cd

at =
z

1 + 6S2 + b
, s43dd

Bu = 2s2 + edz2, s43ed

Bh = 4S− 2z2. s43fd

There are several salient features of the nematic-tubule
free energy density, Eq.s42d, that are worth pointing out.
First, terms that are a first derivative ofh with respect to the
ordered directionx—namely, s]xhd2—do not appear in f.
Small]xh corresponds to an infinitesimal rotation in the em-
bedding space of the tubule’s extension axis, which we have

arbitrarily chosen to point alongX̂ and therefore must not
cost any elastic free energy. Therefore absence of thes]xhd2

term is a direct consequence of the underlying rotational in-
variance of theembeddingspace, which a tubule, extended

alongX̂, spontaneously breaksf10g. Second,f exhibits a lin-
ear coupling of the longitudinal fluctuation of the nematic-
order parametert to the longitudinal strain]xu. This corre-
sponds to the linear coupling betweenQ

=
and the metric

tensorg
=

in the original model, Eq.s9d, and encodes the fact
that nematic order induces uniaxial strain and vice versa.
Last and most importantly, the transverse fluctuation of the
nematic order,s, is “minimally” f32g coupled to the trans-
verse strain component]yu, with the coefficient of the linear
coupling, s]yu, precisely such that it forms a complete
square with two other termss2 ands]yud2. This ensures that
a small and nonzero transverse strain]yu scorresponding to a
reorientation of the uniaxial strain axisd can be completely
compensated by a uniform perturbations, which corre-
sponds to a global rotation of the nematic director within the
reference space, so that the overall free energy change is
exactly zero. This property is a consequence of the underly-
ing rotational invariance of the membrane’sreferencespace,
spontaneously broken by the nematic order, and is therefore
expected on general symmetry principles. One consequence
of such coupling is that integration over the nematic director
field s leads to an effective elastic theory for the nematic
tubule, in which the shear terms]yud2 is absent. The resulting
extra “softness” is the essential feature that qualitatively dis-
tinguishes a nematic tubule studied here from a tubule in an
explicitly anisotropic polymerized membrane studied by
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Radzihovsky and Tonerf10g. It reflects the fact that in a
nematic tubule the rotational symmetry in the reference
space is onlyspontaneouslybroken, and therefore a simulta-
neous rotation of the nematic order and the metric tensor in
the reference space does not cost energy. For mechanical
stability we have therefore added to the free energy, Eq.s42d,
two curvature termsKu and Kh, which would otherwise be
unimportant for smooth deformations.

To study thermal undulations of the nematic tubule it is
convenient to integrate out fluctuations of the nematic order
parameterst ands in a direct analogy of integrating out the
nematic director to study properties of the smectic phase.
This leads to an effective elastic Hamiltonian for the nematic
tubule sin harmonic approximationd:

Hefffu,hg =
1

2
E dxdyfBus]xud2 + Kus]y

2ud2 + Bhs]yhd2

+ Khs]x
2hd2g, s44ad

=
1

2
E dqxdqyfsBuqx

2 + Kuqy
4duusqdu2

+ sBhqy
2 + Khqx

4duhsqdu2g, s44bd

where in the last equation we have also expressed the elastic
Hamiltonian in terms of the Fourier components defined by

usqd =E dxdye−iq·rusr d, s45ad

hsqd =E dxdye−iq·rhsr d. s45bd

From Heff we observe that at the harmonic level, fluctua-
tions of h field and the phonon fieldu are decoupled from
each other. Furthermore, the in-plane phonon-fieldu elastic-
ity is identical to that of extensively studied two-dimensional
smectic liquid crystal with layers extended alongy f19,33g.
Therefore we can immediately adopt known results for a
two-dimensional smectic to fluctuations of the nematic-
tubule phasef19,33g. For example, for a membrane with in-
trinsic sizeLx3Ly, the bulk contribution to mean-squared
fluctuationsssee below for contribution from other modesd
for u is given by

ku2l =
1

Bu
Î Lx

2pau
cus2pauLx/Ly

2d

=5
1

Î2pBu

Î Lx

2pau
, if Ly

2 @ 2pauLx,

1

s2pd2

1

Bu

Ly

au
, if Ly

2 ! 2pauLx.6 s46d

Therefore, thermal fluctuations of the phonon fieldu grow
without bound with membrane’s intrinsic sizesLx,Lyd. This
growth of thermal fluctuations of theu field is a signature of
the qualitative importance of the hitherto neglected nonlinear
elastic terms.

From Eq.s42d we observe that at long length scalessbe-
yond ÎKs /Csd the nematic orientation fields is locked by
the “minimal coupling” term to transverse strain fluctuations
]yu. This together with dimensional analysis allows us to
relate the asymptotic scaling of the nematic director fields
to that of the phonon fieldu through

ks2l ~
1

Ly
2ku2l. s47d

Despite a strong growth ofku2l appearing in Eq.s46d, we
therefore find that the in-plane nematic orientational fluctua-
tions remains finite in the thermodynamic limit.

From Heff we observe that the undulation fieldh is also
governed by the same two-dimensional smectic anisotropic
elasticity, except that the roles ofx and y axes are inter-
changed. At the harmonic level, it is identical to that of a
permanently anisotropic membrane studied in Ref.f10g. As
discussed in great detail there, two related quantities can be
defined to describe the tubule geometry at a finite tempera-
ture, tubule radius of gyration,RG sthicknessd, and tubule
roughnesshrms as follows:

RG
2 = kuhsx,0d − hsx,Lydu2l, s48ad

hrms
2 = kuhs0,yd − hsLx,ydu2l. s48bd

As indicated in Fig. 2RG measures the radius of a typical
cross section of the tubule that is perpendicular to the nem-
atic order and tubule axis, whilehrms measures wandering of
the tubule transverse its backbone. As discussed by Radzi-
hovsky and Tonerf10g fluctuations of these two quantities
are strongly affected by the so-called zero modes, which cor-
respond to Fourier modes of the undulation fieldh with one
vanishing wave vector component. Adapting these results to
our case, we find

RGsLx,Lyd = Ly
1/4SRsLx/ÎLyd, s49ad

hrmssLx,Lyd = Lx
1/2ShsLx/ÎLyd, s49bd

where two crossover functionsSR andSh satisfy

SRsxd → 5 1
Îx

, x → 0,

const, x → `,
6 s50d

Shsxd → Hconst, x → 0,

x, x → `.
J s51d

For an approximately square size membranesLx.Lx.Ld,
we find thathrms scales linearly withL, while RG~L1/4. Fi-
nally, we note that quantities similar to Eq.s48d can also be
defined for the fluctuations of the phonon fieldu. Their
asymptotic forms are also given by Eq.s49d, with the role of
x andy axes interchanged.

As was found for explicitly anisotropic tubulesf10g, we
expect that inclusion of the so far ignored self-avoidance and
elastic nonlinearitysboth from in-plane phonon as well as
height undulationd will swell the nematic tubule and further
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stabilize it against thermal fluctuations. In order to perform
such a study, we will need a formalism of elastic free energy
for the nematic tubule that includes all relevant nonlineari-
ties. We derive this nonlinear elasticity in the next subsection
and leave the study of it to a future research.

B. Nonlinear theory for the nematic tubule

Our goal now is to derive the fully rotationally invariant
sin both the reference and target spacesd free energy describ-
ing nematic tubule. This turns out to be simpler within the
purely elastic formulation, in which, as discussed in Sec. II,
the in-plane nematic orientational degrees of freedom have
been formally integrated out. The analysis here, then, paral-
lels our work on nonlinear elasticity of three-dimensional,
bulk nematic elastomersf17g.

In such a purely elastic approach the nematic tubule’s free
energy is a functional of the deviation of metric tensorg

=

from its equilibrium valuesg0=. Since the elastic free energy
density should be invariant under arbitrary rotations in both
reference and target spaces, for homogeneous deformations
and in two dimensions it must be a function of only two
scalar functions of the metric tensorf34g:

S1 = Tr g
=

, s52ad

S2 = Tr g
=

2. s52bd

In the nematic-tubule phase, we can expand the effective
elastic free energy density around the ground state corre-
sponding to the metric tensorg0=, Eq. s31d:

fefffS1,S2g = fefffS1
0,S2

0g + A1dS1 + A2dS2 +
1

2
B1dS1

2

+ B12dS1dS2 +
1

2
B2dS2

2 + OsdSi
3d, s53d

where

dS1 = Tr g
=

− Tr g
=0 = 2 Tr u= , s54ad

dS2 = Tr g
=

2 − Tr g
=0

2 = 4 Tr g0=u= + 4 Tr u=2. s54bd

As can be checked a posteriori, terms of orderdSi
3 and higher

are irrelevant at long scales in the renormalization-group
sense and can therefore be omitted, as we have done above.

Using Eq. s54d, we may further express the elastic free
energy density in terms of the Lagrange strain tensor. To
proceed, however, we note the following relations between
dS1 anddS2:

dS1dS2 = 2z2dS1
2 + sirrelevant termsd

= 8z2sTr u=d2 + sirrelevant termsd, s55ad

dS2
2 = 4z4dS1

2 + sirrelevant termsd

= 16z4sTr u=d2 + sirrelevant termsd. s55bd

Substituting these relations, together with Eqs.s54d into Eq.
s53d, we obtain the following nonlinear elastic free energy
density for the nematic tubule:

ffu=g = fefffS1,S2g − fefffS1
0,S2

0g

= 2sA1 + 2z2A2dTr u= + 4A2s− z2uyy + Tr u=2d

+ 2sB1 + 4z2B12 + 4z4B2dsTr u=d2. s56d

Using the fact thatg
=0, Eq. s31d, is a true ground state, to-

gether with the observation, from Eqs.s36d, that Tru= anduyy
are, respectively, linear and quadratic in the displacement
fields,u andh, we find that the coefficient of Tru= identically
vanishes—namely,

A1 + 2z2A2 = 0. s57d

To express the elastic free energy in terms of the phonon
field u and the undulation fieldh, we furthermore note the
following two identities:

Tr u= = z]xu +
1

2
s¹ud2 +

1

2
s¹hd2, s58ad

− z2uyy + Tr u=2 = Sz]xu +
1

2
s¹ud2 +

1

2
s¹hd2D2

−
1

2
fz]yh + s]xuds]yhd − s]yuds]xhdg2

+ irrelevant terms. s58bd

Finally, in order to further simplify the notation, we rescale
the coordinates in the reference space according to

x → z−1x, s59d

thereby obtaining our final expression for the nonlinear elas-
tic free energy density of a nematic tubule:

ffu,hg =
1

2
BuFs]xud +

1

2
s¹ud2 +

1

2
s¹hd2G2

+
1

2
Bhf]yhs1 + ]xud − s]yuds]xhdg2

+
1

2
Kus]y

2ud2 +
1

2
Khs]x

2hd2, s60d

with the effective bulk elastic moduli given by

Bu = 8z4A2 + 4z4sB1 + 4z2B12 + 4z4B2d, s61ad

Bh = − 4z4A2. s61bd

Despite our ignoring of a number ofsat long-scalesd sub-
dominant terms, it is easy to verify that our final expression
for the elastic free energy density, Eq.s60d, is actuallyex-
actly invariant under arbitrary rotations in both the reference
and the target spaces. To see this we first note that tubule’s
reference ground-state conformation, using the rescaled co-
ordinate system Eq.s59d, is given by

R0sxd = X̂x. s62d

Under arbitrary rotation in both reference space and target
space, it becomes
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Rsxd = N̂0sn̂0 ·xd ; X̂fx + u0sxdg + h0sxd, s63d

characterized by target and reference-space unit vectorsN̂0
and n̂0, respectively. This situation is illustrated in Fig. 4.
Without loss of generality, we may parametrize these two
unit vectors as

N̂0 = X̂ cosf + Ŷ sinf, s64ad

n̂0 = x̂ cosu + ŷ sinu. s64bd

From Eq.s63d, it is easy to see that relative to the reference
stateR0, Eq. s62d, this pure rotation corresponds to a phonon

field u0sxd and an undulation fieldh0sxd given by

u0sxd = zxscosu cosf − 1d + zy sinu cosf, s65ad

h0sxd = zŶ sinfsx cosu + y sinud. s65bd

Substituting these two equations intoffu,hg, Eq. s60d, we
find, that, indeed, as demanded by rotational invariance, the
nonlinear elastic free energy strictly vanishes for an arbitrary
rotation in both the reference and target spaces.

V. CONCLUSION

In this paper, we have presented a Landau theory for po-
lymerized membrane with spontaneous in-plane nematic or-
der. We have analyzed the mean-field phase diagram and
studied harmonic thermal fluctuations in the nematic-tubule
phase. We have also derived a nonlinear elastic free energy
for the nematic tubule, which will be an essential starting
point for future analysis of elastic nonlinearities and self-
avoiding interaction that we have so far ignored. Such a
study is necessary in order to understand the physics of any
realistic membrane exhibiting spontaneous nematic tubule
phase.
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