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Phases and transitions in phantom nematic elastomer membranes
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Motivated by recently discovered unusual properties of bulk nematic elastomers, we study a phase diagram
of liquid-crystalline polymerized phantom membranes, focusing on in-plane nematic order. We predict that
such membranes should generically exhibit five phases, distinguished by their conformational and in-plane
orientational properties: namely, isotropic-crumpled, nematic-crumpled, isotropic-flat, nematic-flat, and
nematic-tubule phases. In the nematic-tubule phase, the membrane is extended along the dirgptintaof
neousnematic order and is crumpled in the other. The associated spontaneous symmetries breaking guarantees
that the nematic tubule is characterized by a conformational-orientationalGoltiston¢ mode and the
concomitant vanishing of the in-plane shear modulus. We show that long-range orientational order of the
nematic tubule is maintained even in the presence of harmonic thermal fluctuations. However, it is likely that
tubule’s elastic properties are qualitatively modified by these fluctuations, which can be studied using a
nonlinear elastic theory for the nematic tubule phase that we derive at the end of this paper.

DOI: 10.1103/PhysRevE.71.011802 PACS nunifer61.41+e, 64.60.Fr, 64.60.Ak, 46.70.Hg

I. INTRODUCTION Motivated by unusual properties of nematic elastomers

Fluctuating polymerizefll] membrane$2] have attracted that have been recently discovergi2-18—i.e., a sponta-
considerable interest in the past two decades. Probably tH¥$OUS nematic order in an amorphous solid phase and result-
most striking property that distinguishes them from their"d SOft elasticity characterized by one vanishing shear

one-dimensional polymer analog and most other two.nodulus—we have previously studied fluctuations and elas-

dimensional systems is that polymerized membranes admit?fi“l’ of a flat tethered membrane that zghi?sorr:taneous
low-temperature flat phasi8-5| characterized by a long- "-Plane anisotropy—i.e., a nematic ordée]. Such sponta-
range order in membrane’s normal. This phase is separat ousdo:‘der gyarantedes the eX'S“;’.‘CG of a.zer?)—energy in-
ol ' . _plane deformation mode corresponding to a simultaneous re-
ferr?trg da :'c?r%tj;npﬁ;at:rir?e”rjr;ngé?ﬂgg?csjingugfgdtfgziggorientation of nematic and uniaxial distortion axes and,

6-8. At low t t i interolay betw h ence, vanishing of an in-plane shear modulus. As in other
[6-8]. \Llow temperatures, strong Interplay between thermal.g - i ctuating system$20], we found that elastic nonlin-
fluctuations and elastic nonlinearities infinitely enhances th

¢ ) o o . Rarities become qualitatively important in determining mem-
effective bending rigidity, which in turn stabilizes the flat yrane's Jong-scale elasticity and conformations. However,
phase against these very fluctuati¢gst,8,9. The resulting  gye to the vanishing of an in-plane shear modulus, the elas-
flat phase exhibits rather unusual length-scale-dependeftity of flat nematic elastomer membranes differs qualita-
elasticity, nonlinear response to external stress and a univefively from that of isotropic and that of explicitly anisotropic
sal negative Poisson ratfd,5]. membranes: a renormalization analysis of the undulation
More recently, stimulated by a number of possible anisononlinearity shows that the nematic-flat phase is character-
tropic realizations, the role of elastic membrane anisotropyzed by a conventional, length-scale-independent bending-
was considered by Radzihovsky and TofED]. It was dis-  rigidity modulus[19,21].
covered that while permanent in-plane anisotropy is unim- While bulk nematic elastomers and gels have received
portant at long scales within the crumpled and flat phases, itonsiderable experimental and theoretical attention, proper-
qualitatively modifies the global phase diagram of anisoties of equally interesting two-dimensional system—i.e.,
tropic polymerized membranes, leading to an intermediat@ematic elastomer membranes—have, to the best of our
(in its properties and location in the phase diagré&mbule” knowledge, not been explored in any detail. A fémather
phase. In the tubule phase the membrane is extended in ordealized experimental realizations of sucpontaneously
direction and crumpled in the other, with its crumpled anisotropic nematic membranes can be envisioned. For ex-
boundary exhibiting statistics of a self-avoiding polymer.ample, one may prepare a nematic elastomer sheet in its
The usual crumpled-to-flat transition of an isotropic meme-isotropic phase and lower the temperature of the elastomer
brane is therefore generically split into two consecutive onesmembrane into its nematic state. The chemical structure of
crumpled-to-tubule and tubule-flat transitions. Fluctuationsliquid-crystalline mesogenic units in such nematic elastomer
nonlinear elasticity, and phase transitions into and out of thehould be chosen such that they prefer alignment parallel to
tubule phase have been studied extensif/&dy}, with predic-  the membrane surface. Liquid-crystalline polymers adsorbed
tions dramatically confirmed by large-scale Monte Carloonto a polymerized membrane can also develop a spontane-
simulations[11]. ous nematic order at sufficiently high dendi82], which in
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Nematic Tubule | - Average thicknes&g and root mean fluctuation,,¢ are defined in
sotropic Flat Eqgs.(49). Small rods, aligned on the membrane’s surface, schemati-
cally indicate existence of the in-plane nematic order.
Nematic Flat

be significantly modified by the self-avoidance and elastic
FIG. 1. Schematic mean-field phase diagram for a polymerizedionlinearities[10]. These conformational properti¢sr the

membrane with spontaneous in-plane nematic order. Parametersabsence thereptan also be used as indicators of phase tran-
and 3 drive crumpling transition and isotropic-nematic transition, Sitions into and out of the nematic tubule phase, accompa-
respectively, and are defined in Secs. Il and Ill. The nematic-tubuleied by usual thermodynamic singularities—e.g., in the heat
phase is the stable phase in the shaded region. In the triangle regiaapacity. For a more detailed discussion of the scaling prop-
between three critical poin;, C,, andCs, two phases are meta- erties of polymerized tubules and transitions into and out of
stable. The dashed line connecti@ig andC, is a (schematig first- the tubule phase, we refer the reader to RE@).
order transition line between isotropic/nematic-crumpled phases We also derive a fully rotationally invariant nonlinear
and the nematic-tubule phase. elasticity characterizing nematic tubules. We find that be-
. _ . cause of the spontaneous nature of the in-plane nematic or-
turn wil act as a spontaneous elast|.c anisotropy to the MEMyer, the nonlinear elastic free energy of the nematic tubule
brane elasticity. The elastic properties of lipid bilayers with yi¢a s qualitatively from the tubule phase of a permanently

spontaneous tilt order should be almost identical to nemati‘énisotropic membrangl0]. We leave the full analysis of
elastomer membranes that we study in this pd@&t. Fi-  ,h1e's elastic nonlinearities and thermal fluctuations to a

nally, oth_er types Of_ liquid-crystalline orders may also beg e research. Here, we will have little to say on the very
realized in polymerized membranes. For example, tWOjneresting and important question of the effects of heteroge-
dimensional smectic order may spontaneously developeiry associated with the random cross-linking of elas-
when the temperature is further lowered in a nematlcallyiomers Based on a recent body of work on conventional
ordered elastomer membrane. This can also be taken inm]uid c.rystals confined in random environmef,26 and
account using a straightforward generalization of our mOdeIrandome polymerized membrané27], we expeét that at

In this Ppaper we continue to explore the physics Of_ pha‘r"sufficiently long scales, even weak heterogeneities will lead
tom [24] liquid-crystalline tethered membranes, focusing Onh

h Il oh di h Its 1 he i I 0 qualitatively important modifications of some of the pre-
the overall phase diagram that results from the Interplay Ofjictions made in this paper. Understanding these will be es-

membrane’s in-plane nematic and conformational orders. A§gntial for a direct comparison with experimef2g]. We
discussed in detail in Sec. lll, we find that in the |sotrop|cp|an to explore these in the future.

sector of the phase diagram, characterized by a vanishing +,4 body of this paper is organized as follows. In Sec. II

in-plane nematic order, the system is identical to the usug} s inyroduce a Landau model for a liquid-crystalline tethered
isotropic tethered membranes and, therefore, exhibits We”r'nembrane whose mean-field phase diagram we map out in
studied - isotropic-crumpled(IC) . and |sotrop|q-flat (IF) Sec. lll. In Sec. IV, we focus on the most interesting phase—
phases. Development of nematic order generically leads tf,e nematic-tubule—and study its thermal fluctuations at the

three _additional phases: th_e nematic-crumple_eNC), harmonic level. In Sec. IV B, we formally integrate out the
nematic-tubulgNT), and nematic-flaiNF) phases. Different o atic order parameter and derive an effective fubplin-

phases can be distinguished by different expectation values, . anq rotationally invariant elastic free energy for the nem-
of the nematic order parameter and the metric tensor. Thes(ﬁiC tubule phase

results are summarized by a mean-field global phase-diagram
in Fig. 1.

We also study harmonic fluctuations within the most in-
teresting nematic-tubule phase. As we discuss in Sec. IV and
show schematically in Fig. 2, the geometry and fluctuations Nematic elastomer membranes are direct generalization of
of a nematic tubule, with an intrinsic sizex L, are charac- permanently anisotropic tethered membranes studied in Ref.
terized by its average thickne&%;(L) and root mean fluc- [10], with the in-plane elastic anisotropy chosen bgpen-
tuations h,,{L) about its energetically preferred extendedtaneouslylocal nematic order. The latter plays the role of a
state, which scale as new degree of freedom that fluctuates at a finite temperature.

” As for an ordinary tethered membrane, its geometric confor-
Ro(L) =LY, hypdL) < LY, @ mation (state is described by a three-dimensional vector
where v and ¢ are universal exponerftl0]. For idealized field R(x), which specifies the positiofembedding of the
“phantom” membranes=1/4 andf=1, but are expected to reference-space mass poiin the three-dimensional target

Il. MODEL OF NEMATIC ELASTOMER MEMBRANE
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space. Throughout this paper, we will use lowercase boldfaceematic-isotropic transitions in two dimensions to be con-
characters, such asx=x,8,=xX+yy, to denote two- tinuous[30].
dimensional vectors in the reference space and uppercase The |ast part off, Eq. (3), is the coupling between nem-
boldface characters such &=XX+YY +ZZ to denote atic order and the elastic degrees of freedom, which, to low-
three-dimensional vectors in the target space, respectivelgst order, is given by
spanned by a set of mutually orthogonal unit vectdgs, -
panneo By a set o y orfod 4% for=—a TrQg=-aTr QB, 6)

=X,6=y} and{X,Y,Z}. = =

The elastic free energy density of the membrane can bahereg=g-(Tr g)l/2 is the traceless part of the metric ten-

conveniently described as a function of a reference-spacsor. In the presence of such tensorial nemato-elastic cou-

metric tensoig: pling, nematic ordeQ acts as a uniaxial shear stress and
therefore renders the in-plane elasticity anisotropic inside a

Jap = R ﬁ, (2)  nematic phase. Concomitantly, an elastic distortion charac-
IXq Xy terized by an anisotropic metric tensor acts as a quadrupolar

field inducing nematic order. As usual in a Landau descrip-
tion, although other higher-order couplings exist, such as, for
example,y TrgTr 92, they do not lead to any new qualita-
clve effects and, furthermore, for weak nematic order, are
(uantitatively subdominant. Their primary effect is to
slightly change the locus of phase boundaries without chang-
erﬁg their topology. We will therefore ignore them in this pa-

inherited from the Euclidean metrig; of the embedding
space. By constructiomy,, is explicitly a target-space scalar
(i.e., rotationally invariant in the embedding sppaank-2
reference-space tensor, and is hon-negative. The thermal
pectation value of the metric tensdg), can be used to dis-
tinguish different phases of a tethered membrane. More sp
cifically, two eigenvalues ofg) describe whether and how
the membrane is extended along two directions in its refer-
ence space. For examplg) vanishes in the crumpled phase o matic order paramet@ in Eq. (3) and obtain an effective

and is proportional to the identity matrix in the flat phase, g|agic free energy density formulated purely in terms of the
with the common eigenvalue describing the relative size ofqtric tensor. Up to fourth order ig, it is given by

the flat membrane in the three-dimensional target space. In =

the tubule phase of an intrinsically anisotropic membrane,
(g) has only one positive eigenvalue, which corresponds to
the fact that the membrane is extended along one direction U >
and crumpled along others. Therefdge has all the proper- +B(Trg)°+CTrgTrg (7)

ties of a physical order parameter. , . and agrees with the purely elastic model used in our previous

_ Nematic elas_tomer membra_nes are in addition characteg—tudy of the nematic-flat pha§&9]. Although such effective
ized by a local in-plane nematic order parameter flgl). 1o de| can also be used to study the phase diagram and other
Characterizing membrane’s spontaneous elastic anisotropynases, it cannot distinguish the nematic-crumpled and the
Q describes an intrinsic property of the membrane and is gotropic-crumpled phases, since both are characterized by a
second-rank symmetric trace-less tensor in the twovyanishing metric tensor. Therefore, depending on the equilib-
dimensional reference space, with compone@g,.a.b  rjum value of the metric tensor, controlled by model param-
=X,y, and2,Q,,=0, and is a target-space scal@f]. The  eters, f4 predicts a crumpled phase, a spontaneous tubule
Landau free energy density for our model of a nematic elasphase(nematic-tubule phagean isotropic-flat phase, and a
tomer membrane is a rotationally invarie(thbth in the ref- spontaneous anisotropic flat pha$3ematic-f|at phaSe

We can also formally and perturbatively integrate out the

1 1
ferlg] = EK(Vzr)2 totTrg u(Trg® +o(Trg?

erence and target spagdsnction ofg,Q, Here, the usual crumpled-to-flat transition is determined by
- changing the sign of, while the crumpled-to-tubule transi-
flg.Ql=fdgl+f[Q] +fedg,Ql, (3)  tion is driven by a sign ofi= . This purely elastic approach

) . i ) . has the advantage of simplicity, stemming from absence of
where fe_ is the elastic free energy density for an isotropiCine nematic-order parameter. In Sec. IV, we will use this
polymerized membrang]: effective elastic free energy to study the nonlinear elasticity
p N in the nematic-tubule phase.

=KveRy2 4 + 2 24 2
fe[g] Z(V R)"+r1 Trg 2(Tr g) ,u,Trg () Ill. MEAN-FIELD PHASE DIAGRAM

nematic-isotropic transition in two dimensions: ergy density, Eq(4) undergoes a continuo(i81] crumpling
transition ag’ is tuned from positive to negati&]. On the

K B v other hand,f,, Eq. (5), exhibits a second-order isotropic-
fn= E(Vg)z o Q*+ ST Q. (3 nematic transition ag’ changes sigfid0]. When bothr’ and
B’ are small, the competition between these two types of
It reflects the special feature of nematic-isotropic transitionorder becomes important.
in two dimensions—namely, the absence of the usual cubic To work out the mean-field phase diagram, we minimize
invariant TrQ® that vanishes identically. This allows the free energy density, E(), over the metric tensag and
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the nematic order paramet®: To this end, it is convenient
to rescale both order parametgrandQ as well as the total
free energy, Eq(3), as follows:

“Q
=

—

(8a)

[le)

a2

16y

(8b)

—

Q

B
cw
(=]

f— ——f.

25602 80

Furthermore, it is clear that the free energy is minimized by
uniform nematic order and metric tensor. Therefore we can

ignore the two higher-derivative termsandK appearing in
Egs. (4) and (5), respectively. The resulting rescaled total
free energy density has the following simple form:

flg,Ql= g[Tr(g +rl-QP+Tr(g+rL-Q)?
LT ©
where

B 8r'\',u3v
= o (109
p=2E (100)

o
€= A, (100
M

and] is the 2xX 2 identity matrix. The stability of the elastic
free energy, Eq(4), requiresu>0 and\ + x> 0; therefore,
e>-1.

The linear coupling, Eq(6), betweeng and Q prefers
same “orientation” (alignment of their =eigenv=ect(jrsfor
these two tensors. Therefore, in the ground state, where
and Q minimize the total free energy, Eq9), these two
tensors commute. Using the coordinate system in wijich

PHYSICAL REVIEW E 71, 011802(2009

TABLE |. Possible phases of a nematic elastomer membrane.

01, 0, andS S=0 S#0
01=0o= Isotropic crumpled Nematic crumpled
1= gz>0 Isotropic flat Unstable
01>0,>0 Unstable Nematic flat
01>0,=0 Unstable Nematic tubule

f4001,02,S] = (2 + €)[(9: - a1)?+(gp— a)?]

+2e(g1— ay) (92— ap) (139
=(1+e)(gy+gp— ay— ay)?
+(01— 02— o + a)?, (13b
fdS]=(S*+ p)?, (130
and
a;=(S-r), (149
ap = — (S+ r), (14b)

with a; = a,, andfgy, fs non-negative definite.

To obtain a mean-field phase diagram, we need to mini-
mizef, Eqg.(12), over non-negative;, g,, andSfor a given
r and B. Before doing that, however, it is useful to classify
all possible phases according to ground-state values of
01, O, andS. It is easy to see that for vanishing nematic-
order, the free energy density, E®), reduces to that of an
isotropic polymerized membrane—i.e., Ed). An isotropic
polymerized membrane is either in the isotropic-crumpled
phase wherey;=g,=0 or in the isotropic-flat phase where
01=0,>0. In other words, a state witly, # g, andS=0 can-
not be a stable ground state. Conversely, anisotropy in the
metric tensorg, # g», acts as an external field on the nematic
order paramete, inevitably inducing finite nematic order.
ThereforeS must be finite wheneveg; #g,. Similarly, a
nonzero nematic order acts as an external shear stress tensor,
which always induces a finite shear strain in a flat membrane
(Hook’s law), leading to elastic anisotropy witly; # g,.

andQ are simultaneously diagonal, they can be parametrize@hereforeg, andg, cannot be identical in the presence of a

as

S 0

g O _
)’ 2—(0 —s)’ (v

0 o

|

I

where g, and g, are two non-negative eigenvalues of the
metric tensoig and S a non-negative magnitude of the nem-

atic order. Substituting these into free enefgyEq. (9), we
find that it can be written as

1 1
f= Efg[gllgzs] + éfs[S], (12

where

finite nematic orderS. That is, if S+ 0, the membrane can
either be in a nematic-crumpled phagg =g,=0) or a
nematic-tubule phaség;>g,=0) or a nematic-flat phase
(g1>9,# 0). We list the resulting five membrane phases in
Table. I.

We now minimize the rescaled free energy, Ec), over
01, O, andS. It is easy to see that B>0,fd S| in Eq. (130
is minimized by

S=0. (15

Substituting this into Eq(13a, we find thatfy[a,,a,,S=0]
is minimized by
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g=g, - (r + \“J’m) > O, (21)
which leads to the phase boundary for the nematic-flat phase
illustrated in Fig. 1.

(i) a;+[€e/ (2+€)]ay,>0 anda,< 0. In this case, the cen-

0 ///// l
S b £ ters of elliptic free energy contours are located outside the
case3 7 |" first quadrant and therefore do not correspond to physical
( . ) case 2 solution of the metric tensor, characterizeddyy,=0. Inde-
(0,00

pendent ofa;, however, there is always one elliptic contour,
which is tangent to the positivg; axis as illustrated in Fig.

3. It is straightforward to see that this tangent poig}
>0,0,=0) is the minimum offg in the physical space of
metrics, which corresponds to the nematic-tubule phase. At
this tangent point, the partial derivative {f with respect to

g; vanishes—i.e.,

1)

g
g+ ﬁsgz= 0

FIG. 3. Contour plot of ;= const, an ellipse centered (@t; , )
in the (g4,9,) plane, wheren; < a5, with principle axes along the

diagonal(1,1) direction. As discussed in the text, in ca@gfy is ﬂq _ « €ay \ _
minimized by the center of the ellipse, which corresponds to a 991 | o =22+e| g -~ _2 el 0, (22)
nematic-flat phase. In cad@), it is minimized by the pointT, 0,0

where the ellipse is tangent with the positige axis. This corre-  \which leads to
sponds to a nematic-tubule phase. In céisg fy is minimized by

the origing;=g,=0, which corresponds to @ematic or isotropic ea, 2[S—(1+e)r]

crumpled phase. G=at 2+e 2+¢ (23)
Substituting thisg; andg,=0 into Eq.(12), the rescaled total
01=0y= {0'_ forr =0, (1)  Clastic free energy reduces to
\[r|, forr<o0. 2(1+e) 1
f=———7(S+1?+=($+ B> (24)
which, as discussed above, corresponds to the isotropic- (2+¢€) 2

CF“mP'ed, apd the isqtropic—flat pha.ses', respectively. Thigpg equilibrium value oS is determined by minimizing this
situation is illustrated in thg-r plane in Fig. 1. f with constraints

For B<0, our strategy will be to determine the region of
(metastability for various phases. We first minimize a;<0—S>-r, (2539
f4(01.92, 5], defined by Eq(133), for given a; anda,—i.e.,
for given S andr. It is clear that for fixed values at; and
a,, a contourfy= const is an ellipse in thég,;,g,) plane
centered ataq, ay). Its principle axes are along two diagonal ) o —
(1,+1) directions, as shown in Fig. 3. Depending on theF0" @ negativer, it is easy to see that as long as:\|g],
values ofa; anda,—i.e., the center of the ellipse—the mini- there is alwz_;\y_s a positive val_ue Sithat both minimizes Eq_.
mizer off,[g,,0,, 5] falls into three categories. (_24) a_nd satisfies the constraints, EQE_). The case of posi-

(i) a,>a,>0. The ellipses are centered within the first tive r is more subtle. By a technically involved, but concep-

d SR tually straightforward, calculation, we find that f@gr<-2
quadrant. It is easy to see thigtis minimized by —-1/(2+e¢) (i.e., to the left of pointC, in Fig. 1), a nematic

17) tubule state is stable as long @s+e)r > |2+4|. For —21

+e)/(2+€)>pB>-2-1/(2+¢) (i.e., to the right ofC,, but to
with a minimal value zero. This corresponds to a nematic-flathe left of C; in Fig. 1), we find that a metastable nematic-
phase. Substituting thegg andg, into Eq.(12), we obtain  tubule state exists as long as

L . 2(1+e€) <_3<(1+6)r>2/3
f:5(82+,8)2, (18) p 2+e 2+e '

And finally for =2(1+€)/(2+€) <B<0 (i.e., to the right of
which, when minimized ove§, gives the magnitude of the C, in Fig. 1), the nematic tubule phase is stable if and only if
nematic-order parameter in the nematic-flat phase: r<o.

— (iii) a;+[el(2+€)]ay, <0 anda,<O0. In this case, there is
S=48]. (19 no ellipse tangent with the positivgy axis; i.e., the nemat-
N o . . ictubule phase is not stable. There is, however, always one
The condition of non-negativity df, , andg,=a, gives the  ellipse passing through the origig,=g,=0 (see Fig. 3, that

Gt —2 208> (1+er. (25b)
2+e€

(01,9 = (@1, @) = (S—1,-S-71),

(26)

condition of stability of the nematic-flat phase, minimizesf,. Depending on the value & the correspond-
. ing phase may be a nematic-crumpled or isotropic-crumpled
9,=-(S+r) (200 phase. Setting;=g,=0 in Eq.(12), we obtain
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TABLE II. Coordinates of three critical point€;, C, and  son, in the limit of small shear modulus, the discontinuity of
Cs. first-order transition lingjump of order parameter or other
physical quantitiesvanishes.

(o C, Cs
1 5 IV. PHANTOM NEMATIC-TUBULE PHASE
B —2- _ -2
2+¢ 2+ 2+¢ Among all phases that we have identified in the preceding
section, the nematic tubule phase is the most interesting one.
. 1 0 0 As we have just found, it is characterized by a nonzero nem-
(1+eN2+e atic order and a metric tensor with one positive eigenvalue—
ie.,
S 0 g, O
- - 90:(0 —s)’ 90:(0 0)' )
f=§S4+(2 +,8)82+5ﬂ2+ 2(1 +e)r?, (27) = =

Even though the ground-state configuration of this nematic
where we have used Eq&l4d and (14b). Minimizing it tubule phase is identical to that of the tubule phase studied in
over S, we find the equilibrium value of the nematic-order Ref.[10], as we will show in this section, its elasticity and

parameter thermal fluctuations differ qualitatively, due to the fact that
rotational symmetry ispontaneouslproken, in both the ref-
{0 if B+2>0, erence space and target space.
=) —— . (28
vIB+2 it p+2<0. A. Harmonic fluctuations

Considering the self-consistent condition that defines case We first study harmonic thermal fluctuations in the nem-
(iii), as well as the definition of;, and «,, we find that for  atic tubule phase. Without loss of generality we pick the
negativeg, the isotropic-crumpled phase is stable if and onlyintrinsic (reference spagemembrane axes such that in the

if ground state th& axis coincides with the extended direction
of tubule, with the tubule therefore crumpled along the
B+2>0 and r>0. (290 axis. Similarly, our choice of target-space coordinate system
. . rients the tubule along th¥ axis of the embedding space.
Ondthelot.?er hand, the nematic-crumpled phase is stable &/ith this choice, the tubule ground-state conformation is
and only i given by
B+2<0 and O<y|B+2|<(1+e)r. (30) Ro(r)=§X)A(, (32)

We have thereby determined the region of metastabilityyhereg, =2 can be calculated by minimizing the total free
for all five phases admitted by the nematic-elastomer memgpergy Eq(9).
brane. These results are summarized in Fig. 1. In(fhe) To study thermal fluctuations about the nematic-tubule
plane the small triangular region between three critical pointground state, we follow the parameterization introduced in
Cy, Cp, andC; is particularly interesting. This region is di- Ref. [10] for the study of an intrinsically anisotropic tubule.
vided into two parts by the vertical lingg=-2 passing A deviation away from the ground state can be parametrized
throughCs,. In the left part, both nematic-tubule and nematic- by a one-dimensiondkscalay phonon fieldu(r) and a two-

crumpled phases are metastable. In the right part, bothimensional undulation fielti(x), defined by
nematic-tubule and isotropic-crumpled phases are meta-

stable. Consequently, there exists a first-order transition line R(r) =[x+ u(r)]X + h(r). (33)
betweerC; andC,. This line is illustrated schematically by a _ ) ) _
dashed curve in Fig. 1. It connects a second-order nematid-he corresponding metric tensor, @), is then given by

tubule—to—nematic-crumpled transition boundary on the 0 _ 2 2

left to a second—orderp nematic-tubule—to—iﬁotropic— Goc= L+ AW+ (30)° (349
crumpled phase boundary on the right. The exact position of 0

this first-order line, which can in principle be determined Oy = (£ + ) (dyu) + (84h) - (ah), (34b)
from comparing free energy of different phases, is not essen-

tial to our discussion. Outside the triangular region, all phase gSy: (<?yu)2 + (o"yh)z. (340

transitions are continuous in our mean-field analysis.

For completeness, in Table Il we list the coordinates o
the three critical point€,, C,, andCs in the (B,r) plane. It
is interesting to note that distances between any two of these 1 o
points, and therefore the triangular area, vanishes bs- Uap = E(gab_gab)' (39)
comes large, corresponding to an incompressible limit of
vanishing shear-to-bulk moduli ratio. Due to the same reaits components are given by

fThe Lagrange strain tensor is defined as half the deviation of
the metric tensor from its ground-state valyg—i.e.,
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l 1 f ’ L !h = f L - f )
o= L0 + (0P + 2302, (369 Lo =119.Q1 flgo Qo]
2 2 =K (V)2 + C,l0 = ayau)? + K (V)2
1 1 +C (17— aT(?Xu)z + Bu(axu)2 + Ku(ayzu)2
Uyy = §(§+ ﬁXU)(é‘yU) + E(axh) ’ ((9yh), (36b) + Bh(ﬂyh)z + Kh(aXZh)Z’ (42)
where
1 1
Uy = 5(ayu)2 + E(ayh)z. (360 C,=2(1+232+p), (439
Fluctuations of the nematic-order parame@rabout its C,=2(1+65+p), (43b)
ground-state valu€, can be parametrized by two variables
7 and o defined by o, = 1+2i2+ , (430
S+r71 g B
Q=Qo+ Q= : (37)
= = = o -S-r71 ¢
o o a,= 5, (430
They correspond to longitudinal and transverse excitations of 1+65°+p
the nematic order, respectively. Their physical significance
can be readily seen by comparing H87) with the more B,=2(2+e), (43¢
usual parametrization of nematic fluctuation in terms of ro-
tation angled and magnitude fluctuatiosS: B, = 4S- 272, (43f)

0=(S+ ﬁ)(cos ¥ sin26 ) 38
=" sin20 -cos®/)
We find that up to linear order ofS and 6,
o=~2S0, 7~35S. (39

Therefore the longitudinal componentdescribes fluctua-
tions in the magnitude of nematic anisotropy ab8utvhile
the transverse componeatis proportional to the rotation of
the nematic director.

There are several salient features of the nematic-tubule
free energy density, Eq42), that are worth pointing out.
First, terms that are a first derivative lofwith respect to the
ordered directiorx—namely, (d,h)>—do not appear inf.
Small d,h corresponds to an infinitesimal rotation in the em-
bedding space of the tubule’s extension axis, which we have
arbitrarily chosen to point aloni and therefore must not
cost any elastic free energy. Therefore absence ofdfe?
term is a direct consequence of the underlying rotational in-
variance of theembeddingspace, which a tubule, extended

When expressed in terms of these scalar fields and thelongX, spontaneously breaks0]. Secondf exhibits a lin-
Lagrange strain tensor, the nematic-tubule free energy, Egar coupling of the longitudinal fluctuation of the nematic-

(9), becomes

1
f[g,g] = %

(2r + 22+ 2u + 2u,)?

+ %[/3+ 207+ 2(S+ 7

+2(0 = 2Uy)? + 2(S= {P12 + 7= Uy + Uyy) 2.
(40)
The condition that, andQo, as given by Eq(31), mini-

mize the elastic free?anergy_densifg,g] guarantees that in
Eqg. (40) terms that are linear im or u, strictly vanish and

order parametet to the longitudinal straim,u. This corre-
sponds to the linear coupling betwe&h and the metric
tensorg in the original model, Eq(9), and encodes the fact
that nematic order induces uniaxial strain and vice versa.
Last and most importantly, the transverse fluctuation of the
nematic orderg, is “minimally” [32] coupled to the trans-
verse strain componeiju, with the coefficient of the linear
coupling, od,u, precisely such that it forms a complete
square with two other terms? and(ayu)z. This ensures that

a small and nonzero transverse strajn (corresponding to a
reorientation of the uniaxial strain axisan be completely
compensated by a uniform perturbatien which corre-
sponds to a global rotation of the nematic director within the

thereby leads to two equations that determine the ground€férence space, so that the overall free energy change is

state-order paramete&and ¢:

-2S+2r(1+e)+(2+€)%=0, (418

4%+ 25(1+B) - 2=0. (41b)

Finally, eliminating the strain componentg; in favor of
the phonon(u) and height undulatiorth) fields using Egs.

exactly zero. This property is a consequence of the underly-
ing rotational invariance of the membraneserencespace,
spontaneously broken by the nematic order, and is therefore
expected on general symmetry principles. One consequence
of such coupling is that integration over the nematic director
field o leads to an effective elastic theory for the nematic
tubule, in which the shear ter(ﬂyu)2 is absent. The resulting
extra “softness” is the essential feature that qualitatively dis-

(36) and keeping only up to quadratic terms, we obtain theinguishes a nematic tubule studied here from a tubule in an

harmonic free energy density of the nematic tubule:

explicitly anisotropic polymerized membrane studied by
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Radzihovsky and Tonel10Q]. It reflects the fact that in a From Eq.(42) we observe that at long length scalés-
nematic tubule the rotational symmetry in the referenceyond VK, /C,) the nematic orientation field is locked by
space is onlyspontaneouslproken, and therefore a simulta- the “minimal coupling” term to transverse strain fluctuations
neous rotation of the nematic order and the metric tensor idu. This together with dimensional analysis allows us to
the reference space does not cost energy. For mechania&late the asymptotic scaling of the nematic director field
stability we have therefore added to the free energy(&£2),  to that of the phonon field through
two curvature term&, and K;, which would otherwise be
unimportant for smooth deformations. () = i<u2>. (47)

To study thermal undulations of the nematic tubule it is Lf,

convenient to integrate out fluctuations of the nematic orde|':)es ite a strong growth ofu?) appearing in Eq(46), we
parameters ando in a direct analogy of integrating out the P 99 PP 9 q8=9),

nematic director to study properties of the smectic phasetherefore find that the in-plane nematic orientational fluctua-

This leads to an effective elastic Hamiltonian for the nematid!ONS rémains finite in the thermodynamic limit.
tubule (in harmonic approximation From Hg we observe that the undulation fielhdis also

governed by the same two-dimensional smectic anisotropic

1 elasticity, except that the roles of and y axes are inter-
Her[u,h] = > f dxdy{ By(3xu)? + K (3y°u)* + B(ayh)? changed. At the harmonic level, it is identical to that of a
permanently anisotropic membrane studied in R&@)]. As
+K(3,2h)?], (449 discussed in great detail there, two related quantities can be

defined to describe the tubule geometry at a finite tempera-

1 ture, tubule radius of gyratiorRs (thickness$, and tubule
=3 f dqxdqy[(BUqf + Kuq;‘,)|u(q)|2 roughness, as follows:
— _ 2
+ (Bl + K@@, (440 R =(In(x,0) = h(x LyfY, (489
where in the last equation we have also expressed the elastic hrzmS: {h(0,y) - h(L,y)|?. (48b)

Hamiltonian in terms of the Fourier components defined by . - ) )
As indicated in Fig. 2R; measures the radius of a typical

. cross section of the tubule that is perpendicular to the nem-
u(q) = f dxdye""u(r), (453 atic order and tubule axis, while,s measures wandering of
the tubule transverse its backbone. As discussed by Radzi-
hovsky and Tonef10] fluctuations of these two quantities
h(q) = f dxdye7h(r) (45b) are strongly affected by the so-called zero modes, which cor-
’ respond to Fourier modes of the undulation fielevith one
vanishing wave vector component. Adapting these results to

From Hq¢ we observe that at the harmonic level, fluctua-Our case, we find

tions of h field and the phonon field are decoupled from

each other. Furthermore, the in-plane phonon-fiedastic- Rs(LeLy) = |_)1/’45R(|_X/ny), (493
ity is identical to that of extensively studied two-dimensional
smectic liquid crystal with layers extended along19,33. MLy Ly) = L)l(/z&(l_x/\,fy), (49h)

Therefore we can immediately adopt known results for a

two-dimensional smectic to fluctuations of the nematic-where two crossover functior§; and S, satisfy

tubule phasé¢19,33. For example, for a membrane with in-

trinsic sizeL, XLy, the bulk contribution to mean-squared i_ X— 0,

fluctuations(see below for contribution from other modes SK(X) — | VX (50)

for u is given by const, X — o,

1 L
2\ — X 2
us) =— 27a L, /L const, x— 0,
(W)= 5\ 5 27 S0 H{ -
X, X— 00,
1 | L
= —— L§> 2ma Ly, For an approximately square size membrahg=L,~=L),
_{ V2mB, ¥ 2may (46)  We find thath,s scales linearly with., while Rg LY Fi-
1 1L, 2 nally, we note that quantities similar to E@8) can also be
(ZW)ZB_UaU' if Ly < 2mal. defined for the fluctuations of the phonon field Their

asymptotic forms are also given by E¢9), with the role of
Therefore, thermal fluctuations of the phonon fieldyrow  x andy axes interchanged.
without bound with membrane’s intrinsic size,,L,). This As was found for explicitly anisotropic tubul¢40], we
growth of thermal fluctuations of thefield is a signature of expect that inclusion of the so far ignored self-avoidance and
the qualitative importance of the hitherto neglected nonlineaelastic nonlinearity(both from in-plane phonon as well as
elastic terms. height undulatiopwill swell the nematic tubule and further
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stabilize it against thermal fluctuations. In order to perform flu]l = fer[ S, S] — feﬁ[§,5g]

such a study, we will need a formalism of elastic free energy o ’ ) )

for the nematic tubule that includes all relevant nonlineari- = 2(Ay+ 2R Tr U+ 4Ay(— LUy + Tr u%)

ties. We derive this nonlinear elasticity in the next subsection +2(By + 4%B, + 40*B,)(Tr u). (56)

and leave the study of it to a future research. i )
Using the fact thago, Eg. (31), is a true ground state, to-

B. Nonlinear theory for the nematic tubule gether with the observation, from Ed86), that Tru andu,,

Our goal now is to derive the fully rotationally invariant @ré, respectively, linear and quadratic in the displacement
(in both the reference and target spadese energy describ- fields,u andh, we find that the coefficient of Tu identically
ing nematic tubule. This turns out to be simpler within the Vanishes—namely,
purely elastic formulation, in which, as discussed in Sec. Il, A+ 272A, =0 57
the in-plane nematic orientational degrees of freedom have 1+ 207 =0. (57
been formally integrated out. The analysis here, then, paralfo express the elastic free energy in terms of the phonon
lels our work on nonlinear elasticity of three-dimensional,field u and the undulation fielth, we furthermore note the

bulk nematic elastomefd 7). following two identities:

In such a purely elastic approach the nematic tubule’s free
energy is a functional of the deviation of metric tengpr Tru=Zou+ }(Vu)2+ }(Vh)z (583
from its equilibrium valuegy,. Since the elastic free energy = 02 2 '

density should be invariant under arbitrary rotations in both

reference and target spaces, for homogeneous deformations 5 1 5 1 2 2
and in two dimensions it must be a function of only two & Uy+ Tru"=|Zou+ E(VU) + E(Vh)
scalar functions of the metric tens(@4]:
1
S =Trg, (523 ~Sleah+ (@uiagh) - (a,u)(3xh) >
S,=Trgl. (52b) +irrelevant terms. (58b)

inally, in order to further simplify the notation, we rescale

In the nematic-tubule phase, we can expand the ef“fectiveg1 dinates in th f dina t
elastic free energy density around the ground state corr ne coordinates n the reference space according to

sponding to the metric tensgp, Eq. (31): x— X, (59)
1 thereby obtaining our final expression for the nonlinear elas-
f Sl=f S+A +A +-B y g p
erl Su Sl = Ter S ] + A0S, + A0, 2 108 tic free energy density of a nematic tubule:
+B +1g 65+ 0(65° 53 ! L owzs Lome|
1205165+ 5B, (05), (53) fluh]= 2By (G + S(Vu)?+ (V)
e L84, (1 + a0) - () () P
+ —By[ J, +d.u) — (d,u) (2
85,=Trg-Trgo=2Tru, (549 2 M X YR
1 2, 1\2 1 2h\2
8S,=Trg?-Trgg=4Trgu+4Tru?>.  (54b *+ SKuld W)™+ SKn(ah)", (60)

As can be checked a posteriori, terms of ordagrand higher  with the effective bulk elastic moduli given by

are irrelevant at long scales in the renormalization-group

sense and can therefore be omitted, as we have done above. By =8L'A + 47%(By + 40°By, + 4L°By), (61a)
Using Eq.(54), we may further express the elastic free

energy density in terms of the Lagrange strain tensor. To B, = - 4°A,. (61b)

proceed, however, we note the following relations between ) ) )
S, and &Sy Despite our ignoring of a number ¢t long-scalessub-

_ dominant terms, it is easy to verify that our final expression
65,65, = 20265 + (irrelevant termy for the elastic free energy density, E®0), is actuallyex-
= 872(Tr u) + (irrelevant term 55 actly invariant under arbitrary rotations in both the reference
U 5 (553 and the target spaces. To see this we first note that tubule’s
=4 irrel reference ground-state conformation, using the rescaled co-
85 = 4*55] + (irrelevant terms ordinate system Eq59), is given by

= 16¢*(Tr u)? + (irrelevant termp. (55h)
Substituting these relations, together with E@#l) into Eq.

(53), we obtain the following nonlinear elastic free energy Under arbitrary rotation in both reference space and target
density for the nematic tubule: space, it becomes

Ry(X) = XX. (62
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y field ug(x) and an undulation fielthy(x) given by
lA1o Up(X) = {x(cosh cos¢—1) + {ysinf cos¢p, (658
ho(X) = £Y sin $(x cos@ +y sin 6). (65b)
* Substituting these two equations intfu,h], Eq. (60), we

find, that, indeed, as demanded by rotational invariance, the

z No nonlinear elastic free energy strictly vanishes for an arbitrary
/ rotation in both the reference and target spaces.
Y
V. CONCLUSION
o N X In this paper, we have presented a Landau theory for po-

lymerized membrane with spontaneous in-plane nematic or-
FIG. 4. A ground-state conformation of a nematic tubule can beder' .We have "%‘”a'yzed the mea!’“f'e'q phase dlagram and

_ _ . - studied harmonic thermal fluctuations in the nematic-tubule
parametrized by two unit vectorg andNo, Eg. (63), that, respec-

tively, describe the orientation of the tubule in the reference an(fhase' We have also derived a nonlinear elastic free energy

R - or the nematic tubule, which will be an essential starting
target spaces. In the reference state, (68), lo andNo are chosen  oine for future analysis of elastic nonlinearities and self-

to bek andX, respectively. avoiding interaction that we have so far ignored. Such a
study is necessary in order to understand the physics of any
R(X) = No(fig - X) = X[X + Ug(X)] + hg(X), (63) rehalistic membrane exhibiting spontaneous nematic tubule
. phase.

characterized by target and reference-space unit veblprs

and A, respectively. This situation is illustrated in Fig. 4. ACKNOWLEDGMENTS
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